Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542977

RESUMO

Water-soluble ligands based on a 1,10-phenanthroline core are relatively poorly studied compounds. Developing efficient and convenient syntheses of them would result in new interesting applications because of the importance of 1,10-phenanthrolines. In this manuscript, we describe novel and practical ways to introduce a carboxyl and, for the first time, a phenol and dithiocarboxyl group under mild reaction conditions. This strategy enables highly efficient and practical synthesis of suitable organosulfur compounds with high added value, high chemoselectivity, and a broad substrate range. We present the selective conversion of a hydroxydialdehyde in the form of 10-hydroxybenzo[h]quinoline-7,9-dicarbaldehyde into its derivative, unique hydroxydicarboxylic acid, by an oxidation procedure, giving 10-hydroxybenzo[h]quinoline-7,9-dicarboxylic acid. A similar procedure resulted in the formation of 9-methyl-1,10-phenanthroline-2-carboxylic acid by oxidation of commercially available neocuproine. An alternative method of obtaining 1,10-phenanthroline derivatives possessing carboxylic acid group can be based on the hydrolysis of ester or nitrile groups; however, this synthesis leads to unexpected products. Moreover, we apply Perkin condensation to synthesize a vinyl (or styryl) analog of 1,10-phenanthroline derivatives with phenol function. This reaction also demonstrates a new, simple, and efficient strategy for converting methyl derivatives of 1,10-phenanthroline. We anticipate that the new way of converting methyl will find wide application in chemical synthesis.

2.
Nat Commun ; 14(1): 6343, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816721

RESUMO

Methane activation by photocatalysis is one of the promising sustainable technologies for chemical synthesis. However, the current efficiency and stability of the process are moderate. Herein, a PdCu nanoalloy (~2.3 nm) was decorated on TiO2, which works for the efficient, stable, and selective photocatalytic oxidative coupling of methane at room temperature. A high methane conversion rate of 2480 µmol g-1 h-1 to C2 with an apparent quantum efficiency of ~8.4% has been achieved. More importantly, the photocatalyst exhibits the turnover frequency and turnover number of 116 h-1 and 12,642 with respect to PdCu, representing a record among all the photocatalytic processes (λ > 300 nm) operated at room temperature, together with a long stability of over 112 hours. The nanoalloy works as a hole acceptor, in which Pd softens and weakens C-H bond in methane and Cu decreases the adsorption energy of C2 products, leading to the high efficiency and long-time stability.

3.
Nat Commun ; 14(1): 4431, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481611

RESUMO

Phenol is one of the most important fine chemical intermediates in the synthesis of plastics and drugs with a market size of ca. $30b1 and the commercial production is via a two-step selective oxidation of benzene, requiring high energy input (high temperature and high pressure) in the presence of a corrosive acidic medium, and causing serious environmental issues2-5. Here we present a four-phase interface strategy with well-designed Pd@Cu nanoarchitecture decorated TiO2 as a catalyst in a suspension system. The optimised catalyst leads to a turnover number of 16,000-100,000 for phenol generation with respect to the active sites and an excellent selectivity of ca. 93%. Such unprecedented results are attributed to the efficient activation of benzene by the atomically Cu coated Pd nanoarchitecture, enhanced charge separation, and an oxidant-lean environment. The rational design of catalyst and reaction system provides a green pathway for the selective conversion of symmetric organic molecules.

4.
Philos Trans A Math Phys Eng Sci ; 381(2250): 20220254, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37211039

RESUMO

Binding of organic molecules on oxide mineral surfaces is a key process which impacts the fertility and stability of soils. Aluminium oxide and hydroxide minerals are known to strongly bind organic matter. To understand the nature and strength of sorption of organic carbon in soil, we investigated the binding of small organic molecules and larger polysaccharide biomolecules on α-Al2O3 (corundum). We modelled the hydroxylated α-Al2O3 (0001) surface, since these minerals' surfaces are hydroxylated in the natural soil environment. Adsorption was modelled using density functional theory (DFT) with empirical dispersion correction. Small organic molecules (alcohol, amine, amide, ester and carboxylic acid) were found to adsorb on the hydroxylated surface by forming multiple hydrogen bonds with the surface, with carboxylic acid as the most favourable adsorbate. A possible route from hydrogen-bonded to covalently bonded adsorbates was demonstrated, through co-adsorption of the acid adsorbate and a hydroxyl group to a surface aluminium atom. Then we modelled the adsorption of biopolymers, fragments of polysaccharides which naturally occur in soil: cellulose, chitin, chitosan and pectin. These biopolymers were able to adopt a large variety of hydrogen-bonded adsorption configurations. Cellulose, pectin and chitosan could adsorb particularly strongly, and therefore are likely to be stable in soil. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.

5.
RSC Adv ; 12(42): 27604-27615, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36276046

RESUMO

Organic carbon (OC) is an essential component of soil. Sorption of OC to oxide mineral surfaces is a key process in soil preservation due to its ability to protect OC from microbial degradation. To understand the sorption of OC in soils and obtain a quantitative description of the binding of organic molecules to soil minerals, we investigated the binding of water and small organic molecules, typical building blocks of OC, on α-Al2O3, a common soil mineral. α-Al2O3 was modelled using (0001)-oriented periodic slabs, using density functional theory calculations with empirical dispersion correction. For water, dissociative adsorption was energetically preferred to molecular adsorption. Amine, amide and carboxylic acid functional groups were found to bind more strongly to this surface compared to water. Alcohol, ether, thiol and ester functional groups had adsorption energies very similar to that of water, while hydrocarbons were found to bind less strongly. Carboxylic acids were the strongest bound surface adsorbates in this study. Dissociated adsorption configurations (where allowed by the molecules' chemical nature) were usually more favourable than molecular adsorption. Hydrogen bonding was found to be a major contributor to the stability of adsorption configurations. This work shows that a number of organic functional groups, in particular amine, amide and carboxylic acids, bind to the α-Al2O3(0001) surface more strongly than water; thus they are likely to be adsorbed on this mineral surface under ambient conditions and to provide stability of adsorbed OC.

9.
Faraday Discuss ; 227: 341-358, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300894

RESUMO

A series of structures based on graphitic carbon nitride (g-C3N4), a layered material composed of linked carbon-nitrogen heterocycles arranged in a plane, were investigated by density functional theory calculations. g-C3N4 is a semiconductor that absorbs UV light and visible light at the blue end of the visible spectrum, and is widely studied as a photocatalyst for water splitting; however, its photocatalytic efficiency is limited by its poor light-harvesting ability and low charge mobilities. Modifications to the g-C3N4 structure could greatly improve its optical and electronic properties and its photocatalytic efficiency. In this work, the g-C3N4 structure was modified by replacing the nitrogen linker with heteroatoms (phosphorus, boron) or aromatic groups (benzene, s-triazine and substituted benzenes). Two-dimensional (2D) sheets and three-dimensional (3D) multilayer structures with different stacking types were modelled. Several new structures were predicted to have electronic properties superior to g-C3N4 for use as water splitting photocatalysts. In particular, introduction of phosphorus, benzene and s-triazine groups led to band gaps smaller than in the standard g-C3N4 (down to 2.4 eV, corresponding to green light). Doping with boron in the linker positions dramatically reduced the band gap (to 1.6 eV, corresponding to red light); the doped material has the valence band position suitable for water oxidation. Our computational study shows that chemical modification of g-C3N4 is a powerful method to tune this material's electronic properties and improve its photocatalytic activity.

10.
J Phys Chem Lett ; 11(17): 7320-7326, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32787298

RESUMO

Kinetic effects in monolayer self-assembly at liquid-solid interfaces are not well explored but can provide unique insights. We use variable-temperature scanning tunneling microscopy (STM) to quantify the desorption kinetics of 2,6-naphthalenedicarboxylic acid (NDA) monolayers at nonanoic acid-graphite interfaces. Quantitative tracking of the decline of molecular coverages by STM between 57.5 and 65.0 °C unveiled single-exponential decays over the course of days. An Arrhenius plot of rate constants derived from fits results in a surprisingly high energy barrier of 208 kJ mol-1 that strongly contrasts with the desorption energy of 16.4 kJ mol-1 with respect to solution as determined from a Born-Haber cycle. This vast discrepancy indicates a high-energy transition state. Expanding these studies to further systems is the key to pinpointing the molecular origin of the remarkably large NDA desorption barrier.

11.
ACS Appl Mater Interfaces ; 11(35): 31909-31922, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31385493

RESUMO

Composites of titanium dioxide (TiO2) and reduced graphene oxide (RGO) have proven to be much more effective photocatalysts than TiO2 alone. However, little attention has been paid so far to the chemical structure of TiO2/RGO interfaces and to the role that the unavoidable residual oxygen functional groups of RGO play in the photocatalytic mechanism. In this work, we develop models of TiO2 rutile (110)/RGO interfaces by including a variety of oxygen functional groups known to be present in RGO. Using hybrid density functional theory calculations, we demonstrate that the presence of oxygen functional groups and the formation of interfacial cross-links (Ti-O-C covalent bonds and strong hydrogen bonds between TiO2 and RGO) have a major effect on the electronic properties of RGO and RGO-based composites. The electronic structure changes from semimetallic to semiconducting with an indirect band gap, with the lowest unoccupied band positioned below the TiO2 conduction band and largely localized on RGO oxygen and carbon orbitals, with some contributions of RGO-bonded Ti atoms. We suggest that this RGO-based lowest unoccupied band acts as a photoelectron trap and the indirect nature of the band gap hinders electron-hole recombination. These results can explain the experimentally observed extended lifetimes of photoexcited charge carriers in TiO2/RGO composites and the enhancement of photocatalytic efficiency of these composites.

12.
Chemistry ; 25(8): 1975-1983, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30475422

RESUMO

The interplay between the self-assembly and surface chemistry of 2,3,6,7,10,11-hexaaminotriphenylene (HATP) on Cu(111) was complementarily studied by high-resolution scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) under ultra-high vacuum conditions. To shed light on the competitive metal coordination, comparative experiments were carried out on pristine and nickel-covered Cu(111). Directly after room-temperature deposition of HATP onto pristine Cu(111), self-assembled aggregates were observed by STM, and XPS results indicated still protonated amino groups. Annealing up to 200 °C activated the progressive single deprotonation of all amino groups as indicated by chemical shifts of both the N 1s and C 1s core levels in the XP spectra. This enabled the formation of topologically diverse π-d conjugated coordination networks with intrinsic copper adatoms. The basic motif of these networks was a metal-organic trimer, in which three HATP molecules were coordinated by Cu3 clusters, as corroborated by the accompanying density functional theory (DFT) simulations. Additional deposition of more reactive nickel atoms resulted in both chemical and structural changes with deprotonation and formation of bis(diimino)-Ni bonded networks already at room temperature. Even though fused hexagonal metal-coordinated pores were observed, extended honeycomb networks remained elusive, as tentatively explained by the restricted reversibility of these metal-organic bonds.

13.
Nanoscale ; 10(25): 12035-12044, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29905751

RESUMO

Even though the surface-assisted dehalogenative coupling constitutes the most abundant protocol in on-surface synthesis, its full potential will only become visible if selectivity issues with polybrominated precursors are comprehensively understood, opening new venues for both organometallic self-assembly and on-surface polymerization. Using the 3,3',5,5'-tetrabromo-2,2',4,4',6,6'-hexafluorobiphenyl (Br4F6BP) at Ag(111), we demonstrate a remote site-selective functionalization at room temperature and a marked temperature difference in double- vs. quadruple activation, both phenomena caused by conformational mechanical effects of the precursor-surface ensemble. The submolecularly resolved structural characterization was achieved by Scanning Tunneling Microscopy, the chemical state was quantitatively assessed by X-ray Photoelectron Spectroscopy, and the analysis of the experimental signatures was supported through first-principles Density-Functional Theory calculations. The non-planarity of the various structures at the surface was specifically probed by additional Near Edge X-ray Absorption Fine Structure experiments. Upon progressive heating, Br4F6BP on Ag(111) shows the following unprecedented phenomena: (1) formation of regular organometallic 1D chains via remote site-selective 3,5'-didebromination; (2) a marked temperature difference in double- vs. quadruple activation; (3) an organometallic self-assembly based on reversibility of C-Ag-C linkages with a thus far unknown polymorphism affording both hexagonal and rectangular 2D networks; (4) extraordinary thermal stability of the organometallic networks. Controlled covalent coupling at the previously Br-functionalized sites was not achieved for the Br4F6BP precursor, in contrast to the comparatively studied non-fluorinated analogue.

16.
Faraday Discuss ; 204: 331-348, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28776616

RESUMO

Self-assembly of benzene-1,3,5-tricarboxylic acid (trimesic acid - TMA) monolayers at the alkanoic acid-graphite interface is revisited. Even though this archetypal model system for hydrogen bonded porous networks is particularly well studied, the analysis of routinely observed superperiodic contrast modulations known as moiré patterns lags significantly behind. Fundamental questions remain unanswered such as, are moiré periodicity and orientation always the same, i.e. is exclusively only one specific moiré pattern observed? What are the geometric relationships (superstructure matrices) between moiré, TMA, and graphite lattices? What affects the moiré pattern formation? Is there any influence from solvent, concentration, or thermal treatment? These basic questions are addressed via scanning tunneling microscopy experiments at the liquid-solid interface, revealing a variety of different moiré patterns. Interestingly, TMA and graphite lattices were always found to be ∼5° rotated with respect to each other. Consequently, the observed variation in the moiré patterns is attributed to minute deviations (<2°) from this preferred orientation. Quantitative analysis of moiré periods and orientations facilitates the determination of the TMA lattice parameter with picometer precision.

17.
ACS Nano ; 10(12): 10901-10911, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024384

RESUMO

Self-assembly of 1,3,5-tris(4-mercaptophenyl)benzene (TMB), a 3-fold symmetric, thiol-functionalized aromatic molecule, was studied on Au(111) with the aim of realizing extended Au-thiolate-linked molecular architectures. The focus lay on resolving thermally activated structural and chemical changes by a combination of microscopy and spectroscopy. Thus, scanning tunneling microscopy (STM) provided submolecularly resolved structural information, while the chemical state of sulfur was assessed by X-ray photoelectron spectroscopy (XPS). Directly after room-temperature deposition, only less well ordered structures were observed. Mild annealing promoted the first structural transition into ordered molecular chains, partly organized in homochiral molecular braids. Further annealing led to self-similar Sierpinski triangles, while annealing at even higher temperatures again resulted in mostly disordered structures. Both the irregular aggregates observed at room temperature and the chains were identified as metal-organic assemblies, whereby two out of the three intermolecular binding motifs are energetically equivalent according to density functional theory (DFT) simulations. The emergence of Sierpinski triangles is driven by a chemical transformation, i.e., the conversion of coordinative Au-thiolate to covalent thioether linkages, and can be further understood by Monte Carlo simulations. The great structural variance of TMB on Au(111) can on one hand be explained by the energetic equivalence of two binding motifs. On the other hand, the unexpected chemical transition even enhances the structural variance and results in thiol-derived covalent molecular architectures.

18.
J Phys Condens Matter ; 28(7): 070301, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26808089
19.
J Phys Condens Matter ; 28(7): 074004, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26808551

RESUMO

The modelling of an excess electron in a semiconductor in a prototypical dye sensitised solar cell is carried out using two complementary approaches: atomistic simulation of the TiO2 nanoparticle surface is complemented by a dielectric continuum model of the solvent-semiconductor interface. The two methods are employed to characterise the bound (excitonic) states formed by the interaction of the electron in the semiconductor with a positive charge opposite the interface. Density-functional theory (DFT) calculations show that the excess electron in TiO2 in the presence of a counterion is not fully localised but extends laterally over a large region, larger than system sizes accessible to DFT calculations. The numerical description of the excess electron at the semiconductor-electrolyte interface based on the continuum model shows that the exciton is also delocalised over a large area: the exciton radius can have values from tens to hundreds of Ångströms, depending on the nature of the semiconductor (characterised by the dielectric constant and the electron effective mass in our model).

20.
Chem Commun (Camb) ; 52(1): 68-71, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26514994

RESUMO

We have used a boroxine-based COF as a template for C60-fullerene self-assembly on graphite. Local removal of the COF by STM based nanomanipulation creates nanocorrals that may host other species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...